Contents
BCS-012 Basic Mathematics
Title Name | BCS-012 Solved Assignment 2019-20 |
University | IGNOU |
Service Type | Solved Assignment (Soft copy/PDF) |
Course | BACHELOR OF COMPUTER APPLICATIONS(BCA) |
Language | ENGLISH |
Semester | BCA(Revised Syllabus)/ASSIGN/SEMESTER-I |
Session | 2019-20 |
Short Name | BCS-012 |
Assignment Code | BCA (1)/012/Assignment/2019-20 |
Product | Assignment of BCA 2020 (IGNOU) |
Price | Rs. 30 |
Last Date of Submission |
15th October, 2019 (For July, 2019 Session) 15th April, 2020 (For January, 2020 Session) |
Q1. Show that
Where ? is a complex cube root of unity.
Q2. Show that A2-4A + 5 I2 = 0. Also, find
Q3. Show that 133 divides 11n+2 + 122n+1 for every natural number n.
Q4. If p th term of an A.P is q and q th term of the A.P. is p, find its r th term.
Q5. If are cube roots of unity, show that
Q6. If α, β are roots of x2-3ax + a2 = 0, find the value(s) of a if α2 + β2 =
Q7. If y = ??
√1+X − √1−X
√1+X + √1−X
, find dy
dX .
Q8. show that A (adj.A) = |A |I3.
Q9. Find the sum of all the integers between 100 and 1000 that are divisible by 9
Q10. Write De Moivre’s theorem and use it to find (√3 + i)
Q11. Solve the equation Given that one of the roots
exceeds the other by 2.
Q12. Solve the inequality and graph its solution.
Q13. Determine the values of x for which f(x) = x increasing and for which it is decreasing.
Q14. Find the points of local maxima and local minima of
Q15. Evaluate : ∫
Q16. Using integration, find length of the curve y = 3 – x from (-1, 4) to (3, 0).
Q17. Find the sum up to n terms of the series 0.4 + 0.44 + 0.444 + …
Q18. Show that the lines
Intersect.
Q19. A tailor needs at least 40 large buttons and 60 small buttons. In the market,
buttions are available in two boxes or cards. A box contains 6 large and 2
small buttons and a card contains 2 large and 4 small buttons. If the cost of
a box is $ 3 and cost of a card is $ 2, find how many boxes and cards
should be purchased so as to minimize the expenditure.
Q20. A manufacturer makes two types of furniture, chairs and tables. Both the
products are processed on three machines A1, A2 and A3. Machine A1
requires 3 hours for a chair and 3 hours for a table, machine A2 requires 5
hours for a chair and 2 hours for a table and machine A3 requires 2 hours
for a chair and 6 hours for a table. The maximum time available on
machines A1, A2 and A3 is 36 hours, 50 hours and 60 hours respectively.
Profits are $ 20 per chair and $ 30 per table. Formulate the above as a
linear programming problem to maximize the profit and solve it.